研华深度学习解决方案,助力智能AI应用!
【CPS中安网 cps.com.cn】
研华近来积极投入AI深度学习领域,就观察发现,除了要收集海量的学习数据之外,系统开发者最常遭遇的难题莫过于繁琐的系统建置工程,像是要使用什么样硬件平台才能有足够的性能执行复杂的函数运算?什么样规格的硬件可满足噪声干扰多的公共运输系统、高标准的科技厂房无尘作业环境、安全防护等级高的医疗院所等场域之要求?AI系统又要如何连接上层管理软件或云端平台?是否有现成可用的知识模型以缩短深度学习的训练时间?而现有的系统若想要升级为深度学习系统时又该从何下手?
为此,研华以兼具软硬件的深度学习完整解决方案──包括负责训练深度学习模型的训练平台、运用知识模型于现场执行推论的推论平台、方便开发深度学习系统的软件开发工具(SDK)、已完成训练且可直接套用的知识模型、以及专业团队提供的系统规划与技术咨询服务──来解决上述种种问题,从而降低了系统建置的复杂度,让开发者更容易布建AI深度学习系统,并将心力投入于其所熟悉的产业知识(domain know-how)以催生出更多创新又务实的应用。
深度学习开启人工智能的更多应用
运用神经网络算法的深度学习技术让讨论了超过半世纪的人工智能(AI)得以走出实验室。现今的人工智能已不再只是打败世界棋王的超级计算机、正在路测的无人驾驶车、或者是试图拟人化的机器人等研究领域的专属技术,而是更具实用性、也更大众化的应用系统,譬如以AI的深度学习技术提升科技工厂生产良率、为农民筛选质量不良的坏果、于零售门市进行人流分析、协助医师判读医学成像、停车场的车位在席侦测、以及主动纠举交通违规等等。
目前研华的深度学习完整解决方案以成功导入制造业、农业、零售业、交通运输业等诸多行业。光是智能交通领域就有城市道路车流统计分析、捷运车厢人潮侦测、停车场车种计数与车牌辨识、户外停车场车位侦测、公交车停靠区违规停车、大型车辆行车管控、铁道落轨或入侵铁道侦测等等的应用。
其中,城市道路车流统计分析的解决方案是于交通控制中心安装服务器等级的训练平台SKY-6100、路侧设备处则安装高性能的推论平台MIC-7500,两款硬件平台即可将该路段每个车道上行经的车辆依车种别(如脚踏车、摩托车、汽车、货车、公交车等)进行辨识,辨识结果再经由网络上传至云端平台。而研华的SDK内提供的API则能让数据与系统整合厂商的应用系统无缝对接,从而生成车流报表、或供仪表板实时显示、亦可作为智能控制之数据源。而与过往在道路上铺设感应线圈来统计每一时段有多少车辆经过只能有粗略的总量报表相比,导入深度学习应用的新管理模式不仅免除了封路铺设线圈的麻烦,亦能获得更详尽也更精确的统计资料。
而公交车停靠区违规停车案例则是于现场装设内建知识模型之外观精巧的小型推论平台MIC-7200来接收侦测摄影机拍摄的影像,经过推论平台的辨识,一旦发现停靠该区的车辆并非公交车,不但现场设置的电子广告牌与广播器会发送警示以告知车主禁止停车的讯息,同时系统亦会于停靠逾三分钟后将数据上传至云端平台之车牌辨识系统以及警察局,以供执法人员径行举发违规临停。透过这样的科技执法工具,人力吃紧的派出所可以远程监控且不再需要亲临现场即能取缔违规;而心存侥幸、贪图一时方便的车主亦在持续影像监控下无所遁形,从而降低任意违停的乱象。
AI是为了解决人类现存问题而存在,而具有自我训练能力因而大幅提高图片、影像、文字或语言等数据辨识度的深度学习则让AI成为在各行各业真正实用的好帮手。但各领域中擅长数据整理与分析的系统开发者并不那么了解深度学习需要怎样的运算环境。而于垂直产业有广泛的软硬件整合经验又有多样化产品线的研华可针对不同场域提供适合的深度学习完整解决方案,还能从丰富的第三方合作伙伴中引进系统所需的资源,从而减轻了繁杂的系统建置工作并降低技术门坎,让系统开发者能尽速完成项目。而研华也相信透过这样资源整合的全方位服务,由AI深度学习技术延伸出的创新智能应用,遍地开花的繁荣景象定是指日可待。
关于研华 –研华科技是智能系统(Intelligent Systems)产业的领导厂商,以先进技术和可靠品质成为客户值得信赖的国际品牌。自1983年成立至今,研华在全球拥有专职员工7,322名,分支机构遍及在21个国家、92个主要城市。其三大事业群组织专注于自动化市场、嵌入式电脑市场及智能服务市场,推出IPC+N+S战略,为客户提供工控自动化及嵌入式产品一体化解决方案及服务。研华以“智能地球的推手”为企业使命,并以“驱动智慧城市创新共建物联产业典范”为目标,协助各产业加速其智能化经营,立志成为智能城市及物联网领域中最具关键影响力的全球企业。
声明:
凡文章来源标注为"CPS中安网"的文章版权均为本站所有,如需转载请务必注明出处为"CPS中安网",违反者本网将追究相关法律责任。非本网作品均来自互联网并标明了来源,如出现侵权行为,请立即与我们联系,待核实后,我们将立即删除,并向您致歉。
征稿:
为了更好的发挥CPS中安网资讯平台价值,促进诸位自身发展以及业务拓展,更好地为企业及个人提供服务,中安网诚征各类稿件,欢迎有实力安防企业、机构、研究员、行业分析师。投稿邮箱: tougao@cps.com.cn(查看征稿详细)